

قضيه: همـُٔ اعداد طبيعى با همر برابرند!

 و ثابــت مى كنيم اگــر max (a,b)=k+1، آن كاه a=b (حكمم اســتقرا). اگر max(a-1,b-1)=k : $\max (\mathrm{a}, \mathrm{b})=\mathrm{k}+1$ a-l=b-1 و در نتيجه a=b و حكم ثابت است!

$$
\begin{aligned}
& \text { دنبالهٔ عددهاى مثبت a چنان است كه داريمه: } \\
& \left(a_{n+1}+n\right) a_{n}=1 \\
& \text { در اين دنباله چند جملئ گويا وجود دارد؟ }
\end{aligned}
$$

كلمهها و اصطلاحات مهمم

1. Prime number عده اول
2. Divides عاد مىكند
3. Product حاصل
4. Irrational كَنگ، ناگويا
5. Rational number عدد گويا
6. Fraction كسر
7. Multiple مضرب
8. Positive integer صحيح مثبت
9. Contradict تناقض

Continuing in this manner, we end up with $226512=2^{4} * 3^{2} * 11^{2} * 13$. We have written 226512 as a product of primes. Also, the notation $\mathrm{m} \nmid \mathrm{n}$ means that n is not divisible by m.
تر جمه براى دانش آموز

From the closure property for multiplication of odd integers, you can prove by induction that for any $k \geq 1$, and any integer m, m^{k} is odd if and only if m is odd. Logically equivalent is that m^{k} is even if and only if m is even.
The fact that m^{k} is odd if m is odd can also be proved using the binomial theorem, which you should have seen in high school:
$(x+y)^{k}=\sum_{i=1}^{k}\binom{k}{i} x^{i} y^{k-i}$.

Since m is odd, $m=2 j+1$ for some integer j.
Let $x=2 j$ and $y=1$. Written another way,

$$
\begin{aligned}
m^{k} & =(2 j+l)^{k} \\
& =l+(2 j)^{l}\binom{k}{l}+(2 j)^{2}\binom{k}{2}+\ldots+(2 j)^{k}\binom{k}{k} .
\end{aligned}
$$

In this form m^{k} is obviously 1 plus an even integer and hence odd.

